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A deterministic vortex sheet method is derived for application
to boundary layer flows. Diffusive vorticity exchange is through
adaptation of a scheme proposed by Fishelov {J. Comput. Phys.
86, 211, 1990) to vortex elements with a sheet-like structure. Special
measures are taken to maintain the integrity of the vortex sheet
representation at inflow and solid boundaries. The flow domain is
periodically regridded to ensuro that it is well covered by vortox
clements. In calculations of a startup channel flow and zero-pressure
gradient and stagaalion houndary layers, smoeth instantaneous
realizations of the velocity field are achieved which closely match
exact results, ® 1995 Academic Press, Inc.

i, INTRODUCTION

Vortex methods |21] are well suited. in principle, to the
nunierical treatment of complex, high Reynolds number turbu-
lent Aows by virtue of their minimal susceptibility to numerical
diffusion and lack of a fixed grid. Recent advances in devel-
oping fast vortex imethods [, 2, 16, | 7] and the parallel imple-
mentation of vortex algorithms on supercomputers |24 have
effectively eliminated many pasi limitations on the number of
vortex elements that can be reasonably employed in simula-
tions. 1t has also become increasingly evident [9] that simula-
tions of three-dimensional turbuience may not require resolu-
tion beyond that of the principal energy containing vortical
structures. Thus, in analogy to large eddy simulations, the com-
putational requirements of 2 successful turbulent Row mudel
may be cased by removal of “*subgrid’” vortices |8]. The result
is that calculations may now he feasible with sufficient scale
resolution o provide a physically acenrate simuolation of three-
dimensional turhulent flow 18]

The physics of the wrbulent boundary layer is governed
by transport deriving from self-replicating guasi-streamwise
vortices [4] coupled to strong wall-normal viscous diffusion of
spanwise vorticity. To successfully model such flows, vortex
element methods must faithfully represent each of these phe-
nomena. A variety of three-dimensional vortex methods have
been proposed [21] which may be capable of modeling the
inviscid dynamics of coherent vortical structures. Viscous diffu-
sion of vorticity, on the other hand. has tended to be modeled
by imposing a random walk on vorlex clements {5-7, 14, 15].
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This has a chaotic influence upon the simulated velocity field
which can overwhelm the naturally occurring irregular eddying
motion found in real turbulent flow [15]. Consequently. it ap-
pears to be essential that a deterministic scheme be used for
modeling vorticity diffusion in the context of vortex element
simulations of turbulent boundary layer flows.

The focus of this work is the development of a deterministic
vortex method capable of providing accurate instantancous sim-
ulations of two-dimensional boundary layers. This will also
serve, after suitable generalization, as a methodology for model-
ing wall-normal vorticity diffusion in the context of a three-
dimensional vortex method treatment of turbulent boundary
layers. The approach is a nonrandom reformulation of Chorin’s
[7] vortex sheet method in which the elements are given a
smooth structure such as is now routinely applied in vortex
biob calculations {21]. In particular, fluctvations caused by the
velocity discontinuity associated with zero thickness sheets is
avoided. Diffusion of vorlicity is accommodated through an
adaptation 1o vortex sheets of the deterministic exchange pro-
cess developed by Fishelov [13].

Several aliernative approaches toward a deterministic de-
scription of diffusion have been introduced in recent years.
These include approximating the Laplacian by an integral oper-
ator evaluated on the vortex elements [10-12, 19, 27, directly
estimating the Laplacian on the free Lagrangian grid formed by
the vortex particles {22], and introducing an effective diffusion
velocity [201. In the Fishelov scheme {13] viscous transfer
between vortex elements is arranged by applying the diffusion
operator to the smoothed vorticity field. As will be seen below,
this method is readily adaptable (o the geometry of sheets and
the presence of a solid boundary, and it is perhaps the most
natural of the deterministic methods to implement within the
context of the current scheme.

Deterministic vortex algorithms require that that part of the
flow domain containing the support of the vorticity be com-
pletely covered by vortex elements at all times. For the present
scheme this implies that vortex sheets near the solid boundary
must be allowed to change size in order to prevent the formation
of regions that are free of vortices. This has another conse-
quence—in common with other Lagrangtan methods [14,22]—
that the flow field be periodically regridded or *‘reshected”” to
restore uniformity to the distribution and size of the elements,
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FIG. 1. tnitial configuration of sheets for boundary layer calculations.

An examination of some of the implications of this procedure
is given below.

An algorithm for boundary layer simulation via smooth vor-
tex sheets is presented in the next section, followed by an
analysis of the kinematical computation of velocities from given
positions and intensities of the vortex elements. A treatment
of boundaries is then given, after which the performance of the
scheme is analyzed in the context of several particular flows,
These include the transitory development of a channel flow in
which the time accuracy of the method is investigated, a zero-
pressure gradient Blasius boundary layer and the boundary layer
developing downstream of a stagnation point, i.e., the Falkner—
Skan similarity solution corresponding to a linearly increasing
outer low velocity [23]. In the last section conclusions are pre-
sented.

2. VORTEX SHEET ALGORITHM

The evolution of the vorticity field, w(x, ), in two-dimen-
sional flow is governed by the transport equation

dw 1
& e w-Vo=-V
” u-vVe RV ®, (1)

where R is the Reynolds number and u = (u, ©) is the velocity
field. In the present scheme, approximate solutions to (1) are
obtained in the form of collections of N vortex sheets or *‘tiles’™
of large aspect ratio §;/h;, where 2/, and 24; are the width and
height of the ith tile, respectively. The vortex sheets are assumed
to have uniform vorticity, w,(t), and to convect with the velocity
of their centers—generally withour change of size and shape.
For most of the sheets, 4; and /; are assigned common constant
values # and /, respectively, equal to the initial dimensions of
the vortex element field. The typical vortex sheet representation
at the start of a boundary layer calculation is illustrated in
Fig. 1. For reasons which will subsequently become evident,
sheets at the inflow boundary and close to the wall are permitted
to increase in size after each convective step. For these special
elements, h; and /; are time dependent.

Figure ! shows a layer of sheets of half thickness arranged
along the wall. These elements are kept stationary during the
calculation, consistent with the view that they are full sized
sheets whose centers are on the wall surface and, hence, non-
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moving. The vorticity of these elements is assigned at each time
step in such a way as to satisfy the no-ship boundary condition.

The convection term on the left-hand side of (1} is satisfied
by having the positions X,(t) = (x;(t), v;(¢)) of the vortex sheets
obey the kinematic equation

o u{x; (1), ). (2)

For the results presented below, the explicit first-order scheme

Xt = xt+ Atuf (3)

yith =yt + Arv} 4

is used to advance the positions of the vortex sheets, where x§
and y? are discrete approximations to x;(n At) and y;(n Af),
respectively, u? = u(x?, n Ar), v} == v(x}, n Af), and Ar is the
time step of the calculation. Some computations were also
made using a second-order Runge—Kutta approximation to (2},
although these did not lead to any noticeable differences in the
computed results. This may be due to the limited scope of the
applications considered here; e.g., high order approximations
to (2) may be of more significance in complex nonsteady flows.

To take into account vorticity diffusion in the boundary layer,
Eq. (1) may be interpreted in a Lagrangian sense as

dw, 1

e (V) 5
i~ rVek (5)
where (Viw); denotes evaluation of Viw at the location of the
ith vortex. Following the development in Fishelov [13), o may
be convolved with a cutoff function ¢; to obtain the approxi-
mate representation

w = P * w {6

from which the estimate
Vip = Vigsr o (7)
follows. Substituting (7) into (5) and evaluating the convelution
integral by summing over the collection of sheets, a basis for
a deterministic model of vorticity diffusion is provided. For a

first-order explicit approximation to the left-hand side of (3)
there follows that

OJ?+] — (Uf +£E m;lf V2¢6(xi—x’) dx", (8)
R 5 A

where A, is the area occupied by the jth vortical element. For
the present study, which is limnited to planar flow, ¢; is chosen
to be the fourth order cutoff function [3, 13]
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Bs(x, ¥) = == (de ™71 — ¢~ 9)
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in which r? = x? + y? and & is the cutoff parameter. Other
choices are possible, some of which may have as yet unrecog-
nized advantages.

For unbounded flows Fishelov [13] showed that (8) may be
made the basis for a consistent approximation to (5). However,
in the presence of boundaries, the radially symmetric structure
of ¢; means that part of the support of V2¢hs(x; — X'} in (8) is
outside the physical flow domain whenever x; is near a wall.
Unless some special steps are taken to account for this, the
amount of vorticity diffusing to points near the boundary will
be distorted. While it is conceivable that a one-sided form of
¢ could be introduced with its support entirely within the flow
domain, such developments are beyond the scope of the present
study. A simpler method, which appears to work satisfactorily
for the calculations described below, is to add contributions to
(8) from fictitious tiles covering that portion of the support
of V¢, extending beyond the solid boundary. These tiles are
taken to be reflections through the wall of physical tiles lying
near the surface of the flow domain, with vorticity set by extrap-
olation of the physical vorticity field through the surface. The
strength of a tile at (x;, —¥;) generated by a tile at {x;, ¥;), where
y = (} 1s the boundary, is given by polynomial extrapolation as

—v) = wlr. Oy = 2
wlx;, —y) = wlx;, 0) o
3 1
(—5 w(x;, 0) + 2w(x;, 2h) — 5@(}6:, 411)) (10

yi 1
K ) 4= .
+ 4}12( w(x;, 0) — w(x;, 2h) 2w(x,,4h)),

where the vorticities on the right-hand side are computed by
an interpolation scheme described below. Some computations
were also done using linear extrapolation in place of (10),
although these proved to be less accurate. As a result of these
considerations, it is now to be understood that the summation
in (8) covers the necessary set of reflected tiles, each of which
has a strength determined from (10).

Evaluation of (8) is much simplified by introducing an ap-
proximation designed to take into account the sheet-like struc-
ture of the vortical elements. Test calculations showed this to
be considerably more accurate and stable than applying simple
quadrature formulas. First, consider the contribution to the vor-
ticity of the (th sheet from a vortex whose streamwise position
x; = x;. The approximation can then be made,

xH, s
[ Vistx = xyax = [ a7 ay Vg — x1)
i 7 Y

(1)
~ 2, 7 v Vigyn— x i~ ),
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where the integration in x” has been legitimately extended to
all of |, since, according to (9), the integrand contains an
exponential term depending on —(x; — x")Y, and so it rapidly
approaches zero for x’ # x;. Substituting for ¢; using (9) and
carrying out the integration yields

h : (i) 1
V2 " f e i ~Gypd Mi N
L ds(x; — Xy dx' = e [e ¥ 16 ( 5 >

i T

+ \/Ee ’()’;*%)2061 (1 _ (y! ;zyj)z):l
(12)

which is valid when x; = x;. At the opposite extreme, when
|x; — x;| = 0, the exponential terms in V¢, force it to be small
for all x’ in A;. In this case, the integral of Vi¢;(x, — x)
over A; is negligible. For the general case where x; # x;, the
artifice may be taken of multiplying (12) by a factor y; =
m((x; — L, x T L)Y 0O (x; — L, % + DY), where m(S) is
the rectilinear measure of the set 5. Thus y; = 1 when x;, = ¥,
and =L, andy; =0if (5 — Lo+ )N (x5 — L x +
L) = . The introduction of vy; is moetivated by the same
considerations as put forth in [7] in the context of the velocity
field calculation. Collecting together the previous results, the
approximate formula is derived,

At Vi h a2 (yr—yi» 1
ntl . Rl ha Biv] - -y - Sl 21
@; w] E Y l:e YTy 16( 57 3

. 2 (13)
4 g U ng (1 — (! ;__23’1‘ )_‘:)],

where the sum in (13) is over both the sheets located in the
physical demain and the special collection of sheets with
strengths given by (10). Since only a relatively small subset of
the complete collection of vortical elements intersect (x; — /;
x; t 1}, the complexity of (13) does not make the numerical
expense of computing w}™' prohibitive.

Advancement of the vortex elements in time is accomplished
by applying (3). (4). and (13) concurrently, so the scheme, as
it is implemented here, is fully explicit. This places limits on
At for stability which may perhaps be avoided by alternative
formulations. The applications pursued here, however, are well
within the capabilities of the explicit scheme so that the develop-
ment of other time marching procedures was not pursued further
at the present time.

For the purposes of implementing (10}, as well as applying
boundary conditions and resheeting the flow domain, a scheme
is required for computing vorticity at arbitrary points in the
flow. Satisfactory performance in this regard is obtained from
linear interpolation in the form

2,00
2,6,

J i

CU(X,') = » (!4)
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where x; i$ now meant to denote an arbitrary point in the flow
and 8, = m{(y; — b,y + h) N (¥ — By + B(2H:). The
denominator of (14} is necessary to compensate for overlap of
the vortex elements if this should occur. For a boundary layer
flow with the wall aty = 0, each of ¥, — A;and y; — h; appearing
in the definition of #; must be set to zero if they happen to be
negative, The sum in (14) is just over those vortices in the
immediate neighborhood of a point, so it is of minimal computa-
tional cost. When x; corresponds to the position of a vortex,
then (14) gives the exact result w(x;) = ;.

3. VELOCITY FIELD

In the vortex sheet method as originally developed by Chorin
{71, the boundary layer approximation @ == —du/dy in inte-
grated form,

ux, )= U + [* oty v, (15)

provides a basis for the calculation of u. Here, U(x) = u(x,
& (x)) and 8,(x) 1s the boundary layer thickness at x. For this
study, (15) is evaluated by applying a rectangle rule to the
integral giving

w(x, ) = UGe) 4+ 2h ) olx, v+ 2hG— B (16)
J=1

where y; + 2AM = &(x;), and the vorticities in (16) are com-
puted using (14), A prescription for calculating the wall-normal
velocity v has also been given [7] based on the integrated two-
dimensional continuity equation:

a fy
vix,y) = —aj'ﬂu(x,y’)dy’. (n

It is helpful in evaluating (17) numerically to first rewrite it as

d a ot r '
v(x,y)=‘y£—a(ﬁ)y w(x,y') dy ) (18)

using integration by parts and the relation @ = —du/dy. Ap-
proxtmating (18) using central differences for the x derivatives
and a rectangle rule for the integral gives

u(x + Ly — wlx — Loy
vix, y) =~y o,

»
—(AyP X, (j— 0.5) (19)
J=1

(w(x.- + 1, (j - 0.5)Ay) = w(x —~ 1,(j — 0.5) Ay))
2
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where M’ Ay = y,, and Ay is chosen to be as close to 2k as
possible under the constraint that M’ is an integer.

To the extent that (16) and (19) depend on the boundary
layer assumption @ = —du/dy, they (or their three-dimensional
analogues) cannot be expected to accommodate the full range
of motions in the near wall region of turbulent flow. Conse-
quently, it is necessary to also consider more generally applica-
ble relations for the kinematic determination of velocities, In
particular, now considering three-dimenstonal flow, the Biot—
Savart integral

ax, ) = [ K(x ~ 30 0 dx, 0)
where
0 -z ¥
Sy s

and €2 is the vorticity vector, may be adapted to computing the
velocities associated with sheet-like vortex elements. Following
common practice, the singularity in (20) may be removed by
replacing K by K, = yr, * K, where ¢, is a smoothing function
equivalent to ¢; introduced previously. As in [14], it will be
assumed that

1 [x{ =7
¥y = 5(]){[)3 3(!)(])5
R e <
A\ n) “2\g Ix[<#,
so that
K x| = 7

K, = 2 3

e s
2 I\n 7

where the cutoff parameter, 7, i$ not necessarily the same

as &, appearing in (9). With this modification (20) may be
written as

ux, 1) = jv K% — x )Y, %", 1) dx, 22)
i fl

where V; is the volume occupied by the jth element. Where
appropriate, the summation in (22) is assumed to include image
vortex sheets used in enforcing the nonpenetration boundary
condition.

For two-dimensional flows, £ = (0, 0, @), and the vortex
elements in (22) may be considered to extend indefinitely in
the spanwise direction. Under this circumstance, the z integra-
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tion over R can be carried out explicitly. A closed form solution
can also be obtained for the streamwise integration over the
limits x; — {;, x; + /; of the vortex sheet in V;. Finally, the y
integral can be modeled by evaluating the integrand at y’' =
¥;. The final result is the nonlocal relations

ux;, 1) = 2 Ujw; (23)
]

vix;, = Vo, (24)
J

where Uy, V; are the respective contributions of the jth vortex
sheet to the 1 and v velocity components at x;. These are given
formally by

U, = B tan™' = — tan‘[é
Y 7 Y Y
X, X,

—|tan™!'— — tan~' —

( an TR, an YR,)

Y1317 ’
+5 Z(g\yz) (X?_Rz*XIR]) (25)

1
+ E(XZR% - XIR%)

3 10 X, X
+oyi——=¥2+ S papl—
1 (Y 3 Y 5)(tan R tan Rn)}jl

B
i ry 3
(26)
1 l1+R, 1 1-R3
+Z(RI—R)+1 - =
sRI-RYH I sy |
where
V1 —rl, <1
R™ = , m=1,2
0, =1

ri=X24+7Y m=1,2,
Xi={x—x—1)in
Xy =(x; — x;+ LI

and

Y=1{(v—y)n
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FIG. 2. Geometry of sheet interactions.

A geometrical interpretation of ry and r, 1s given in Fig. 2.
Despite the apparent complexity of these formulas, for the great
majority of vortex interactions, ry, r; = 1, in which case (25)
and (26) simplify to

27

and

h- &
Vij :—Jln—a
w ry

(28)
respectively. Furthermore, to enable calculation with large num-
bers of sheets, it is likely that a fast multipole summation of
(23) and (24) can be developed from (27) and (2R).

As was previously encountered in regards to (7}, the evalua-
tion of (22) within # of a solid boundary must be done in such
a way as to prevent the loss of contributions to u from that
part of the support of i, cut off by the wall. One approach
toward this end—which is also fully compatible with the veloc-
ity boundary conditions—is to reduce 7 for sheets near the
wall so that the support of i, does not intersect the boundary.
Specifically, for flow above a fixed wall at y = 0, the contribu-
tion of a vortex sheet at y; to the velocity at y where 0 = y =
y;, may be based on insisting that # for the jth sheet be no
larger than |y;|. For the velocity at a point x; = (x;, 0) on the
wall, this means that the sheet lying immediately over it is
forced to contribute to u at the surface via (27) and not (25).
In this case, the difference in arctangent terms in (27) is essen-
tially 7, so that the contribution to the streamwise wall velocity
is —Mhwy, 1.6, exactly what is expected from a physical analysis
of the vortex sheet,

The consistency of (16) and (23) in computing u and (19)
and (24) in computing v may be tested by comparing their
predictions against exact similarity results for a zero pressure
gradient boundary layer. In this, the initial sheet arrangement



A DETERMINISTIC VORTEX SHEET METHOD

FIG. 3. Tests of u predictions: , Bg. (16); ———,

in Fig. 1 is used wherein each vortex element is assigned its
“‘exact’’ vorticity. The latter is obtained from cubic spline
interpolation of the tabulated values given by Schlichting [11].
For this and subsequent discussions of boundary layer flow,
lengths are assumed scaled by a streamwise length, L, and
velocities by the free stream velocity, U,. The Reynolds num-
ber R = U,L/v, and calculations are performed in the nondi-
mensional flow domain 0 = x < x* 0 =y = y* where x* =
7.5 and y* = 6.4Vx*/R. y* is chosen to be large enough to
contain the complete lateral boundary layer growth through
position x*. For the present purposes, & = 1000, N = 1200
(i.e., a 60 X 20 arrangement), ! = 0.05, and » = 0.0138. Here
and in the following, n = C,,\/!; with C, = 0.5. Figures 3a

0.

002 N b

-0.04p '

FIG. 4. Tests of v predictions:
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Egq. (23); and O, Blasius solution. (a) ¥ = 0.1; (b) x = 2.5,

and b show the & predictions on the lines y = 0.1 and x = 2.5,
respectively, while Figs. 4a and b contain similar plots of the
v velocity.

It is clear from Fig. 3a that (16) captures the streamwise
velocity with high accuracy along the entire length of the bound-
ary layer, including both the leading edge and the exit plane.
In contrast, (23) is reasonably accurate only until x =~ 4, after
which it diverges from the Blasius solution, finally becoming
entirely unphysical at x = 7, where it sharply rises. The poor
performance of {23) reflects the absence of contributions from
vorticity lying beyond x*, a flaw which cannot be simply cor-
rected in a boundary layer calculation, since the needed vorticity
can only be obtained with knowledge of the velocity in the

0.02

0.018F 7
ocgoocoOocopQQ
Q.016
0.014F

0.012¢

0.008-
0006+
0.0041

0.0c02+

—_—

—_—

.35

0.25 0.3 0.4 0.45

¥

21 g5 0.2 05

. Eq. {19); ———, Eq. (24); and O, Blasius solution, (a) vy = 0.1; (b) x = 2.5.
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same region, which itself requires the vorticity further down-
stream and so on. Figure 3a also shows that (23) is somewhat
inaccurate at the leading edge of the boundary layer. This may
be attributed to the failure of the Blasius solution to accurately
account for the vorticity field at and around the upstream end
of the flat plate. For example, the Blasius similarity solution
predicts that v and @ are singular at x = 0.

The accuracy of (16) also holds up in the cross stream direc-
tion as shown in Fig. 3b, while (23) shows small deviations
from the exact velocity near the wall and outer edge of the
boundary layer. In the former case, these may be partly a result
of the wall treatment of i, while the latter may be a result of
excluding long-range contributions from vorticity outside the
computational box.

In the case of the wall-normal velocity, Figs. 4a and 4b show
that each of the formulas (19) and {24) are potentially useful,
but neither is free of problems, As in the case of (23), (24)
suffers from the finite extent of the calculation domain by
diverging from the correct solution, although in this instance,
it remains accurate to at least x == 6. Near the leading edge it
deviates from the unphysical singularity of the Blasius solution.
According to Fig. 4b, (24} is fairly accurate across the boundary
layer, although it underpredicts v near the outer edge and
slightly overpredicts it at the wall. These errors are likely due
to the long-range effect of the missing downstream vorticity,
the form of i, and the tile resolution in the wall-normal direc-
tion. Note that the nonpenetration boundary condition has been
identically satisfied with the vse of image vortex sheets.

Equation (19) also displays some undesirable properties in
its representation of p, although the overall trend is captured.
Particularly evident in Figs. 4a and b is its susceptibility to
oscillations. The effect of these in calculations is minimal,
however, since their relative amplitude in comparison to the
streamwise velocity is small. It should be remarked that for
sufficiently coarse streamwise resolution v associated with (24)
is also subject to significant osciilations; thus there is a mini-
mum density of elements in the streamwise direction necessary
for (24) to yield the smooth prediction displayed in Fig. 4b.

It is clear that between the two approaches, only (16) and
(19) are usefol near the exit region of boundary layer flows.
Equations (23) and (24) may be used only if steps are taken
to counter their erroneous predictions near the downstream
edge, e.g., by replacing them by (16) and (19) in the outflow
region. Calculations of boundary layers described below use
(16) exclusively for u, while v is computed with the hybrid
approach for the Blasius flow and via (19) for the Falkner—
Skan flow. Equation {23) is readily used in computations of
periodic channel flow since edge effects are easily eliminated
through the use of periodic streamwise extensions of the flow
domain. In summary, it appears that there are circumstances
when each of the velocity formulas may be useful. However,
for treatment of turbulent flow it is likely that only three-
dimensional extensions of (23) and (24) would be appropriate,
since they will not depend on the boundary layer assumption.

PETER 8. BERNARD

4. BOUNDARY CONDITIDNS

The no-slip condition is satisfied locally by assigning vortic-
ity to the row of half thickness sheets kept fixed along the
solid wall. If (16} is employed in computing u, then after the
computation of x"*! and w"*!' from (3), (4), and (13), the wali
vorticity at the ith sheet is updated via the first-order formula

u(xi! h)

o(x,0) = ————, (29)

where u(x;, k) is computed from (16). If « is determined from
(23), then satisfaction of the no-slip condition requires setting
(23) equal to zero at the location of each of the wall sheets.
This yields a coupled system of equations which may be solved
for the wall vorticities.

Unlike the random vortex method, deterministic approaches
require vortex elements—even possibly of zero vorticity—to
be present at all points of the flow that may be the recipient
of vorticity from viscous transfer. As a result, special care must
be taken, particularly at boundaries, to ensure that no artificial
voids in the element population arise which would distort the
diffusion process. For boundary layer flow this chiefly means
making special provision for the upstream influx of vorticity-
free fluid and allowing for the drift of fluid away from the solid
boundary. In each of these cases, the integrity of the vortex sheet
calculation can be maintained by permitting special groups of
vortex elements to deform according to the local flow condi-
tions.

At an inflow boundary, such as x = 0in Fig. 1, the movement
of new fluid into the computational domain can be accounted
for by allowing the column of sheets with ends at x = 0 to
elongate from one time step to the next. This may be conceptual-
ized as a two-step process in which the sheets first convect
with the flow, and then the vorticity-free flnid entering the flow
domain behind them is appended to their upstream ends. This
procedure assures that the tiles always possess large aspect
ratios so that the validity of the approximations in (13}, {23),
and (24) remain valid. When one of these sheets reaches a
length >4{, a sheet of length 2/ is subtracted from it at its
downstream end-—which is then treated like the other ele-
ments—while the remaining part of the original sheet becomes
a new boundary element with the capacity to lengthen and
eventually divide again in the future. Since the growth of the
boundary sheets is due to the infusion of zero vorticity fluid,
it is necessary to reduce their vorticity accordingly at each time
step. This is formally accomplished by multiplying the updated
vorticity w!t! by the factor x7/x7*! which effectively averages
w; between the zero vorticity fluid entering the flow domain
and that previously existing in the vortex element.

It is in the nature of the Blasius boundary layer flow for fluid
particles to slow and convect away from the surface as they
pass over it. This tendency, if left unchecked, creates holes in
the vortex element representation near 2 solid boundary. To
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counteract this, each of the elements in the second horizontal
row of Fig. 1, i.e., adjacent to the wall elements, are allowed
to increase in thickness by a process similar to that for the
vortices on the upstream boundary. In this, a sheet is first
convected with the flow to position (x*!, y7*"}, after which the
fluid in the gap region between it and the closest wall vortices
is appended to it, thereby increasing its thickness. As before,
the vorticity of the element is then adjusted to reflect the addition
of new fluid. In this instance, after @?*! is computed from (13),
it is replaced by the formula

28]+ (O — hi— k)
2R+ (T = I~ B

(30)

representing a weighted average of w!*'" and w(x], h)—where
the latter quantity is the vorticity along the lower boundary of
the element before its convection. Note that v/*' — b, — A is
the gap width and the denominator in (30) is the new thickness
of the vortex sheet.

The vortices in the second row cannot be allowed to grow
indefinitely, since they would then eventually have a small
aspect ratio. At the same time, it is not feasible to periodically
halve them, such as is done aleng the leading edge, since they
do not grow in length atong the principal flow direction; i.c.,
it is likely that newly divided vortices would soon overlap
downstream vortices. Consequently, if a regular arrangement
of sheet-like vortices is to continually fill all of the flow domain,
regridding is inevitable at periodic intervals. Resheeting is done
by recreating the arrangement of tiles in Fig. 1 with vorticities
determined from (14),

At the downstream boundary, all tiles for which x; — §; >
x* are ¢liminated from the calculation so that the total number
of sheets stays approximately constant in time. Since the com-
putation of u, v. w, and Ve at locations x > x* — ! via (13),
(14), (16), (19}, and (24) depends on having elements for which
x; — I; > x*, special measures must be taken to prevent errors
in computing flow properties at these positions. In the following
computations, this problem is avoided by using linear extrapola-
tion at points x > x* — L For example, u is computed from

w(x, v) = u(x* — L y)

n u(x® — 1 y) —u(x* ~ 3L y)
21

)(x—x* -0 (3D

and similarly for v, @, and Viw. Use of (31) or an equivalent
appears to be necessary; e.g., an alternative boundary condition
in which strearnwise gradients are set to zero for x > x* — |
vields improper boundary layer growth well upstream of x*.

5. COMPUTED RESULTS

One computational ¢ycle of the deterministic vortex sheet
algorithm as it applies to boundary layer flows consists of the

139

following steps. In this it is assumed that x}, y{, and w}, are
known for N vortex sheets covering the flow domain at time nA#:

1. Append images of wall proximate sheets—with vorticity
determined from (10)—to the N vortices so as to ensure that
the support of ¢; is always covered.

2. For interior sheets calculate xI*!, yo*', and w!*', i = 1, ...
N, using (3), (4), and (13), respectively.

3. Account for new fluid entering the flow domain by modi-
fying the length and vorticity of sheets along inflow boundaries.
Divide sheets in two which become greater than 4/ in length.

4. Accommodate the drift of fluid away from the wall by
modifying the width of vortices adjacent to the wall vortices.
Recompute the vorticity of these sheets using (30).

5. Update the wall vorticity.

6. Delete vortices which have convected out of the computa-
tional domain.

7. Resheet if necessary.

8. Return to step 1.

3

In problems with periodic streamwise boundary conditions,
steps 3 and 6 are unnecessary, since vortices passing through
the outflow boundary reappear at the inflow boundary.

Before considering the calculation of boundary layers, a use-
ful test of the algerithm in a simpler setting is its application
to the nonsteady channel flow developing from 4 state of rest
after the sudden imposition of a uniform pressure gradient.
Denoting the streamwise and wall-normal directions by x and
y, respectively, the flow is assumed to be independent of x at
alltimes, i.e., # = u(y, £y and v = 0. For a nondimensionalization
based on the channel widih, d, and the asymptotic average mass
flow velocity, U, the exact steady state solution in this case
is w(y) = —6(1 — 2v). Integration of the momentum equation
across the channel gives the exact relation

di

=2
= R (6 00,0),

(32)

where wu,(f) is the instantaneous average mass flow velocity
and R = U,d/v is the Reynolds number. Note that u,(0) = 0
and u,, (1) — U, as t —> . A first-order time discretization of
(32) may be used to get #,(t + At) at the start of each time
step calcuiation. This, in turn, may be used to get the centerline
velocity needed in the implementation of (16), or, in the case
of (23), a supplementary constant streamwise flow which forces
the computed average mass flow velocity to be exactly u,(r +
Ap). The condition v = 0 is met by (19) and (24} and need not
be computed.

If (16) is employed, then the length of the vortex sheets is
immaterial and the computation may proceed assuming they
are infinitely long. On the other hand, for the application of
{23) it is convenient to introduce periodicity in the streamwise
direction. Calculations in this study are done assuming a period-
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FIG. 5. Steady state vorticity field in channel flow: , computed;

Q. exact solution.

icity of 54. Several periods, generally three or more, both up
and downstream of the computational region are used in the
evaluation of (23) to ensure that « is x independent. In particular,
this eliminates the edge effect, such as was discussed earlier
in reference to Fig. 3. Reflected vortex sheets covering one
channel width above and below the channel are introduced to
enforce the nonpenetration boundary condition. Inclusion of
additional images in this direction has a negligible effect on
the results. The streamwise period of the channel is divided
into three sheets, while 60 span the width. Adding additional
sheets in either direction has no effect upon the computed so-
lution.

Calculations were performed with R = 1000 and & =

06

0.3 b
0.2r R

01r

. I L 2 . L . L
(X(J 50 100 1450 200 250 300 350 400 450 500

t

FIG. 6. Time history of 4 at y = 0.1 in channel flow:
O, exact solution.
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FIG. 7. Vorticity field in channel flow at ¢+ = 50:
exact solution.

, computed; O,

CJ\/E, where C; = 0.2, The numerical results are identical
whether (16) or (23) is used. Figure 5 shows that the asymptotic
vorticity field is predicted with very high accuracy. Of perhaps
more significance is the degree to which the transient state of
the flow is well represented. An indication of this is shown in
Fig. 6, comparing the exact time history of u at the point y =
0.1 in the channel with that from the present algorithm. The
agreement is quite good. Furthermore, Fig. 7 illustrates, through
a comparison of the exact and predicted vorticities across the
lower half-channel at the intermediate time ¢ = 50, that time
accuracy is maintained at all points in the flow during the
computation. Similar calculations to these were also made as-
suming impulsive motion of the fluid in the channel, that is,
having u# = | as the initial condition. In this case, the initial
vorticity discontinuity led to some small discrepancies from
the exact transient solution, although the final equilibrium state
was unchanged.

The Blasius and Falkner—Skan boundary layers were com-
puted by time marching to a steady state after first impuisively
moving the fluid in an initially zero vorticity field. The Blasius
boundary layer was calculated at R = 10,000 using a variety
of grid sizes and values of the parameters & and 7. The perfor-
mance of the algorithm in this flow is summarized in Figs. 8—
10 comparing the exact similarity solution to numerical calcula-
tions using 1200 elements in a 60 X 20 initial arrangement so
that /A = 14.3 and 2700 elemenis in a 90 X 30 grid with the
same aspect ratio. As the figures show—apart from the singular
region near the leading edge—there are only slight differences
between these solutions, suggesting that the flow is well re-
solved in the calculations. As before, § = 0.5\/A_, n=
0.2\/A_y, values which ensure that the supports of ¢ and ¢,
overlap several or more sheets in the y direction. The results
in the accompanying figures change inconsequentially over a
significant range of these parameters.
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The streamwise velocity on a wall-normal cut through the
boundary layer at x = 2.5 is shown in Fig. 8a. The solutions
agree well with the Blasius profile. The situation is similar in
Fig. 8b, showing u along a streamwise cut on the line y =
(0.05. Equivalent plots of the wall-normal velocities are shown
in Figs. 9a and b. Clearly, the predictions of v are credible,
although the relative errors are somewhat greater than in the
case of u. However, due to the magnitude of v, the error in
absolute terms is actually much lower in this case. Figure 9b
shows that near the leading edge. where the variation in v is
most significant, enhancing the density of sheets has a beneficial
effect on the computations. As in the case of Fig. 4a, Fig. 9b
shows that the numerical solution does not mimic the singularity
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1200,

, N = 2700; and O, Blasius sclution. (a) x = 2.5; (b) y = 0.05.

in the Blasius solution. It may be noted that oscillations appear
in the v calculation for x = 5. These may be attributed to
the use of (19) in this region as part of the hybrid scheme
discussed previously.

Predictions of the vorticity are shown in Fig. 10. On the line
x = 2.5 in Fig. 10a, w is closely predicted except at the wall,
where it tends to be slightly too large in magnitude. Figure
10b, containing a plot of the vorticity on the wall surface, shows
the large variation in w near the leading edge of the flat plate
at this Reynolds number. With refined resolution, the prediction
of wall vorticity is substantially improved, suggesting that the
singular behavior of the leading edge flow is partly responsible
for the disparities in vorticity prediction, It will be seen below

0.035
P
0.031
0.025F
Q.02
0018 ,
0.01

0.005-

FIG. 9. Comparisons of v predictions in Blasius boundary layer: ——— N = 1200, —— N = 2700; and O, Blasius solution. (a) x = 2.5; (b) ¥ = 0.05.
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FIG. 10. Comparisons of w predictions in Blasius boundary layer: ———, N = 1200; , N = 2700; and O, Blasius soluticn. {a) x = 2.5; (b) y = (.

that this view is supported by the stagnation boundary layer
calculation where the leading edge flow is smooth and the
downstream predictions are very accurate,

The capabilities of the present scheme in describing the
boundary layer forming downstream of a stagnation point are
illustrated in Figs. 11-13 covering u, v, and o, respectively.
In this case, results are presented for a calculation with R =
1000 and N = 2250 elements in @ 75 X 30 arrangement.
Excellent agreement with the similarity solution for u is found
along x and y cuts as shown in Fig. 11. In particular, u is
free of the unphysical near-wall behavior which is evident in
calculations of this flow using the random sheet method [26].
Similarly, excellent predictions are found in regards to v as

a 25 T T T & @ &
2t i
1.5¢
u
1+ 4
asr
[ 0.02 0.04 0.06 .08 0.1 0.12 0.14
FIG. 11. Comparisons of « predictions in stagnation flow boundary layer:

displayed in Fig. 12, Figure 13 shows generally very good
estimates of the vorticity field, although there is a slight system-
atic loss of accuracy in the wall vorticity prediction with down-
strearn distance. Since the boundary layer thickness is indepen-
dent of x for this flow, and the wall vorticity increases linearly
with downstream distance, as seen in Fig. 13b, it is clear that
the spanwise resolution of the sheet calculation is systematically
deteriorating in the streamwise direction. This may account for
the loss of accuracy. Greater resolution of sheets may help in
counteracting this trend.

Some attention was paid to exploring how the length of the
time interval between resheetings, say ¢, atfects the computed
solutions. It was found that as long as ¢,, is not too large, the

, computed; and O, Falkner—Skan solution. (i) x = 2.5; {(b) y = 0.1
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12. Coemparisons of v predictions in stagnation flow boundary layer:

converged solutions are generally independent of the resheeting
process. A useful means of investigating the influence of 1, is
through observing time traces of the computed vorticity field
at a fixed point for different values of 7,;. The results of such
a comparison are shown in Fig. 14 for the point x = 2.5,y =
0.025 1n the Blasius boundary layer stimulation at R = 10,000
with N = 1200. The cases 7., = 0.025, 0.25, 0.5, 0.75, and 1.0
are considered, where Ar = 0.025 and ¢,, = 0.25 were used in
the previously discussed Blasius boundary layer calculations.

At the largest value, 1,, = 1, @ has substantial oscillations.
Beyond ¢ = 5 in Fig. 14 these have a primary period of one
which is clearly tied to the resheeting process. Higher frequency
disturbances are also visible which originate from other aspects
of the numerical algorithm. For example, as many as eight

a s
w
_100 . L . . , . :
0 0.02 0.04 0.06 0.08 0.1 0.2 014
Y
FIG. 13. Comparisons of w predictions in stagnation flow boundary layer:
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, computed; and O, Fatkner—Skan solution. (a) x = 2.5; (b) y = 0.1

vortex subdivisions would have occurred from vortices on the
front boundary during a unit time interval. While the calculation
with ¢, = 1 appears to be stable, its accuracy is unacceptable.
For larger values of ¢, the solution will ultimately become
unstable, with the appearance of a disorderly geometrical ar-
rangement of sheets. As t, decreases below 1, Fig. 14 shows
that the oscillations reduce in amplitude and then vanish en-
tirely. Fort,, = 0.5, fluctuations are virtually nonexistent. Below
the oscillatory range of ¢,;, resheeting has a small effect on the
equilibrium solution reached in the calculation. For very small
¢,; this may reflect accumulated smoothing from the resheeting
process, a phenomenon which will be investigated more fully
in future work. While the acceptable range of ¢, may be in-
creased by enhancing the accuracy of the interpolation scheme

-100- 4

o —150t 7

, computed; and O, Falkner—Skan solution. (a) x = 2.5; (B) y = 0.
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FIG. 14. Effect of t, on time record of @ at x = 2.5, y = 0.025 in a
Blasius boundary layer: O, 1., = 0.025; — - —, t,, = 0.25; -+, 1, = 0.30;
—— =075 —— 1, = 1.

(13) and other facets of the method, it is unlikely that the need
to resheet can be eliminated. In fact, an analysis of the numerical
solutions shows that the amount of overlap of vortex sheets—
or, conversely, holes in the vortex element population—in-
creases steadily unless thwarted by regridding. Selection of 1,
in applications should be guided by considerations of accuracy
and stability, since the computational time needed in regridding
using (13) is only a small part of the total. At the same time,
to the extent that resheeting is a smoothing process, it is not
desirable to continuously resheet, e.g., at every time step. Evi-
dently, 7., should be 1aken as large as possible but below the
onset of oscillations.

y/é

FIG. 15, w'/u:
layer in Ref. [25].

, random sheet method; O, turbulent boundary
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FIG. 16. v'/u.:
layer in Ref. [25].

, random sheet methed; O, turbulent boundary

The instantaneous realizations of boundary layer flow pro-
duced by the present algorithm match the exact similarity solu-
tions without the spatial velocity fluctuations normally associ-
ated with the random vortex method. This attribute of the
approach may be quantified by the observation that at a fixed
point in the boundary layer after steady state conditions are
reached, the root-mean-square velocity fluctuation, u' =
((u — w)*)'® <1, where the overbar denotes time averaging. Tt
is instructive to contrast this with 1" derived from an equivalent
calculation of the Blasius boundary layer using the random
sheet method. This is plotted in Fig. 15 with an equivalent plot
for ' in Fig. 16. For comparison, the values of u’ and v’
computed in a turbulent boundary layer simulation by Spalart
[25] are also shown. To make the comparisons meaningful, &’
and v’ are given in wall variables, i.e., scaled by the friction
velocity u. = Vvdu/dy(0), and the abscissa is y' = y/&;. These
plots show that the pseudo-turbulent energy in the random
vortex method dwarfs the naturally occurring energy in a true
turbulent flow. In the case of v’, the artificial noise is undimin-
ished at the outer edge of the boundary layer due to the peculiari-
ties of (19). An example of the phenomenon displayed in Figs.
15 and 16 may be found in the back step flow calculations
reported by Gagnon et al. [15], where the turbulent stresses are
significantly overpredicted adjacent to boundaries. Evidently,
it is not reasonable to pretend that the chaotic velocity ficld
associated with the two-dimensional random vortex method is
a substitute for real three-dimensional turbulent flow.

6. CONCLUSIONS

The deterministic approach for computing vorticity diffusion
developed by Fishelov [13] has been shown to be adaptable to
the construction of a vortex sheet method for flows containing
solid boundaries. Numerical predictions of channel and bound-
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ary layer flows suggest that the approach can be successfully
applied to a range of useful applications. The outlock is good
that after suitable generalization to take into account spanwise
velocities, the method can provide a reliable means of account-
ing for viscous diffusion in wrbulent flow simulations. In partic-
ular, it is envisioned that the present technique could be em-
ployed in conjunction with a method for simulating the
dynamics of three-dimensicnal vortical structures,

A number of directions to take in improving the approach
are worthy of consideration in future work. In particular, the
computational efficiency of the algorithm can be enhanced in
several ways, inclading developing fast multipole formuias for
Eqgs. (23) and (24). Various aspects of the algorithm, including
the treatment of the special sets of deforming vortices near
the boundaries, the interpolation scheme (14}, the resheeting
process, the extrapolation condition {10), and the time differenc-
ing, may be recast in higher order form to improve accuracy
beyond that achieved here.
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